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The classical three-dimensional problem of the theory of elasticity for a layer weakened by generally eurvilinear through-cuts is 
considered. A eharacte:ristic feature of the present study is that one-dimensional singular integral equations or, more precisely, 
an infinite system of suda equations is used to solve the three-dimensional boundary-value problem. Numerical experiments indicate 
that the solution of this system by the reduction method converges quite rapidly almost everywhere in the range of variation of 
the thickness coordinate and the third approximation hardly increases the accuracy of results in this range. Hence the proposed 
procedure reduces the dimension of the problem by two. The accuracy of the solution needs to be improved in the immediate 
vicinity of the support tff the layer, which involves singularities at the edge. This problem is not considered in this paper. 

P rob l ems  o f  the above  kind have been  discussed m o r e  or  less comple te ly  in [1-5]. A n  exper imenta l  
s tudy of  the stressed s tate  at the  end  of  the edge  reaching the suppor t  o f  the  layer  is p resen ted  in [6]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider  an elastic l a y e r - h  ~< $3 ~< h, --o. < Xl , x2 < oo weakened  by cavity-like through-cuts  tunnelling 
a long the$3-axis whose  cross-sections have the fo rm of  smooth  open  arcs Lj  (j  = 1, 2 , . . . ,  k).  Suppose  
tha t  the boundar ies  o f  the cavities are subject  to a surface load X~n(X~ + = X~ = X n ,  n = 1, 2, 3). We 
shall a ssume tha t  the curvature  o f  the arcs and the functions Xn satisfy the H61der  condi t ion on  Lj, and 
X~ can  be  expanded  in a Four ier  series i n s  3 on  I -h ,  h]. Below we consider  the  symmet r ic  p r o b l e m  (with 
respec t  to  the  med ian  p lane  of  the layer) o f  the theory  of  elasticity. 

We star t  f rom Lur 'ye ' s  h o m o g e n e o u s  solutions [7], which we express as follows: 
the  b iha rmonic  solut ion 

u,-lu2=-2h(~---~+ ~ 3 ~z F, u3=-h2(o-l)x3V2q) 

0 l=2~thV2F, 0 2 = 8 ~ t h o 2 F / ~ z  2, o 3 = 0 ,  z= x  I+ix 2 

F = ( 3 0 - 1 ) ~ +  ( O - 1 )  - x 3  V2g ~, V2V2g ~=0,  x '3=hx3 

322Fl=-312Fl=2oV2q),  ~ / ~ z = 2  (~1-i~2), Oi=O/~x i, o = ( 1 - 2 v )  -I 

(1.1) 

the  vor tex  solut ion 

u l - i u  2 = 4 i o h ~  ~ z m  cOSPmX3, u 3 = 0  
i n =  I 

O I = 0 ,  0 2 = - 1 6 i / . t o h  ~. t92t'p'n COSPmX 3, 
m=l 

O 3 ----" -- 4il-tO ~ Pm ~ sin pmX 3 
m=l oz 

p,, = rim, 7,, = P,, / h, (V 2 - 7~ )  q~,, = 0 

033 = 0 (1.2) 
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the potential solution 

3 
u , - i u 2 = 2 h ~ z R e ~  O~k(X3),Vk, u 3 = R e ~  ktk(x3)Vk 

k=l k=l 

02 
o I = 2 1 a R e ~  ~k(x3)Vk, 02=-8~th~--~-Re~ t~k(X3)V, 

h k=l k=l 

0 21.to 
o3=41.tO~zRe~. }¢k(X3)Vk, 033= R e ~  V,(X3)¥k 

k=l h k=l 

O~k.(X3 ) = (tk / ~k -- O'Ck ) COS 8kX 3 -- Ox3t k sin 8kX 3 

t k = s i n 5  k, "C k = c o s 5  k, ReSt>0,  Im$ k > 0  

~k (X3) = ((20 -- 1) ~ktk -- 08~'[ k) COS 8kX 3 -- 08~x3t k sin SkX3 

Kk(X3) = ~k(Zk sinSkX 3 --x3t k COSSkX3)), Bk(X3) =20K3(X3)--O~k(X3), 

V k (X 3) = (Sdk + 52Xk) COS 8kX 3 + x352tk sin SkX3 

~., = 5 , / h ,  (V 2 -z ,~ )~  k =0 

(1.3) 

The integral representations of the functions in (1.1)--(1.3) must ensure the existenco of  displace- 
ment jumps and the continuity of the stress vector as Lj (!" = 1, 2 . . . .  , k)  are crossed, as well as the 
decay of displacements and stresses at infinity. Below we shall be concerned with the construction of 
such representations correct in the above sense. 

We set 

qo(z)=ReJ p(~)--~-+p,(~) V2G d~+ I q(~)V2Gds 
L L 

Fz (z) = - 40 Re [ p(~) [In(~ - z) - l - In h] (~ - z) d~ 
L 

V t ( z ) = [  qk( ; )Ko(3"kr )ds+[  Pk(;) K o ( ~ . k r ) d ; + p k ( ; ) - ~ K o ( ~ . k r ) d ~  (1.4) 

%(z)  = I q'.,(;) Ko(r.,r)as+2ReJ Rm(;)r0(r.r)d; 
L L 

G=r21n r - ,  r = l ; - z l ,  ;=G~ +i~2 ~ L, Imqm(;)=0 
h 

The functions p(~) = {Pj(O, ~ ~ L j }  . . . .  , Rm(~) = {Rmj(~), ~ ~Lj} are to be determined from 
the boundary conditions, but first they must be expressed in terms of the displacement jumps on 
Lj. 

We expand all even components of the displacement vector, the stress tensor and the external load 
in Fourier series of the form u = I'. u(m)cos pmX 3 and all odd components in series of the form U = 
Gu(m)sin pmX3. Singularities of the form (~ - z) -3 appear in the kernels of the integral representations 
when the Fourier coefficients o# (m) are determined from (1.4). To remove these singularities we introduce 
relationships between the densities in the representations (1.4) 

4(1 - 30) p,(;)= ~ (0~ (°)p~ (;)+ ~o) p~ (~)) 
k=l 

8 ( - l ) m ( O  - 1) h 2 
/~2m 2 p ( ; ) - 4 i o R , . ( ; ) =  ~. (o~(m)pk(;)+O~ra)p;(;)) 

k=l 

The boundary conditions on L have the form 

(1.5) 

{Ci~ m) - e2iVoC2m)}± = + 2e i" {X~ =) - iX~ =)}±, m = O, 1 .... 
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Re{eiV ((1~m)) ±} = +(X~m)) ±, m = 1,2 .... 

(~1 ----(111 +(I22, (12 =(I22 --(111 +2i(112, (13 =(113 --i(123 

799 

(1.6) 

The upper sign con'esponds to the left edge of the cut as one moves from the tip a i to b i and ¥ is the 
angle between the normal line to the left edge and the Oxl axis (Fig. 1). 

The requirement that the stress vector should be continuous as the cut is crossed (in this case it is 
sufficient for the boundary equalities (1.6) to be satisfied on one of the cut edges) and the requirement 
that the displacement vector should have discontinuities on L lead to the relations 

q:,(~)= [u~m)] q(~)=[4(1-3~)]- '  Re ~ a~°)qk(~) 
4~oh ' k=l 

p(~) = -  UC°) +iVC°) , U c') = d[u~m)] [u'Im)] (1.7) 
8noh ds p 

dtu~ m)] [u~ m) ] ih(U ('0 +iV(") )  
v(m) = ds + ~ ' Rm = p 2on3m 2 

according to which file densities q*(~) ,p(~) ,  Rm(~) can be directly expressed in terms of the displacement 
jumps along the cuts. The requirements also lead to three pairs of infinite systems of linear algebraic 
equations xelating file remaining densities to the jumps. 

Introducing the representations 

q k ( ~ ) = . - ~  [u (j'] Z~ j=l "lkj n 

{ / } • 2h j~"n 1 a - 1  qkj = q k j - ~  u(J)-(-I)J U(°) + v(J) 
Pk + Pk ~ ' f  .= 2a  2 a j  

(1.8) 

(1.9) 

Pk-P;=I~'~ f h S j=l~(1j2 kj +S;j([u~ j)] (-l)Jh((1-1)/t(1j2 V (0))} (1.10) 

we obtain the following "standard" systems ( m , j  = 1, 2 . . . .  ; summation is over k from one to infinity) 

,t/ 
b 

2 7  

N 

I I I  

Fig. 1. 
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R e £  tx~m)qt j =Smj , ReY~ K{km)qkj =0 (1.11) 

Re Y~ ,,,(m),,* ~.(m) .* '~k "I~i =0, Re~  ~'k qkj =-$mj (1.12) 

ImY. A~m)skj =-$, , j ,  Im]~ lx~m)Skj =0 (1.13) 

ImY. A~m)s*kj =0, ImY~ B~m)s*kj =8,,,j (1.14) 

where qkj, q~, Ski, S~j are to be determined and ~mj is the Kronecker delta. 
The resulting systems admit of an exact solution. We consider (1.11). Multiplying the rows in the 

first system by cos p,nx 3 and in the second system by sin pmX3 and summing the results over m, we find 
that 

~. qkj(O~k(X3)--O~(tO))= fj, Y, qkjKk(X3)=O 

fj =2COSpjX 3, Re8 k >0 (1.15) 

The functions %(x3), ;tk(X3) constitute a solution of the following (non-self-adjoint) boundary-value 
problem 

a'.a'(x 3 ) + (I + o) 8~ k (x 3) + Ol.t~ (x 3) = 0 

(1 + O) " 2 2 , ~k (X3) -I- ~k~k (X3) + O~)kO~k (X3) m 0 

• .a t .  • ~k (--1)+ l.l.k (±1)=  O, (0 - -  1) fi20~k(----1) + (0  + 1) Bk(-----1) = 0 

(1.16) 

Using (1.16), one can reduce the functional equations (1.15) to the following equivalent form 

~. qkjYk(X3 ) _ 40 fj'(x~), 
o+1 " 

~., qkj~2yk(x3) = ~ f/(4)(X3) (1.17) 

Here Yk is the solution of the boundary-value problem 

yk 4) + 9R2V"+ s: 4"" yk(+l) ' ~'-'k'k t, kl k =0, _ =Y~(+I)=0 (1.18) 

The generalized orthogonality condition has the form 

I 
I {2y{y~;-(8~ +8~,,)ykY,,,}dx3=O, m;ek 
-I 

Using (1.18) and (1.19), and the scheme developed in [8], we obtain 

(1.19) 

1 1 
2082 I fj'[x3) Yk(X3) dx3 1 I {(Fk') 2 -$2Yk} dx3 

qkj = o+1 -1 -~ 

Computing the above integrals, we finally obtain 

qkj = (-1) j+l 4~2j2~ 
(o+l)(lkjx k)2 ' lkJ =$~-P~ 

In a similar way we can find the solutions of the "standard" systems (1.12)-(1.14) 

(1.20) 

( ) qkj =(-1) j+l 2/~__.__L ,gXj2 30+1 82 
(lki.C,)2 O + 1 

Ski = i(20qk j + rCjq*~j), S*ki = iqk j (1.21) 

We have therefore established that the infinite systems of equations (1.11)--(1.14) are solvable. The 
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solutions are obtained in dosed form and are given by (1.20) and (1.21), all the densities in the integral 
representations (1..4) being expressed in terms of physical quantities, namely, the "displacement" jumps 
onL.  

Formulae (1.9) .,and (1.10) can be simplified considerably by substituting into them the values of the 
coefficients from (1.20) and (1.21) and taking the sums of certain series. We have 

Pk +pk =: 7t3o j=l j ' 

P k - P k  iEkv(O ) V(j) i~o ~ qk) [u~j)] Ek 2(O-1) rc2 
= . . . . .  ' = 2 2 

O'lt [. 1 j h j=l J (O + l) ~k'Ck 
(1.22) 

Note that representations (1.4) also remain valid for the second fundamental problem, for example, 
in the presence of a rigid insertion in a cavity. However in the latter case the densities will be expressed 
in terms of the jumps of the stress vector on L. 

2. I N T E G R A L  EQUATIONS OF BOUNDARY-VALUE PROBLEM (1.6) 

We obtain integral representations for the stresses o# by substituting the formulae from (1.4) for the 
functions in (1.1)-q~l.3). Expanding the resulting expressions in Fourier series in x3, we obtain integral 
representations of the Fourier coefficients o~7')~ Then, by satisfying the boundary conditions (1.6) on 
one edge of L and taking (1.5), (1.7), (1.8), ~ d  (1.22) into account, we arrive at an infinite system of 
one-dimensional singular integro-differential equations of the first kind 

x(O)(~)g(~,~o)ds + . . . .  4nO Fo (~o) 
L 3 o -  1 

! ( 2~O X(m)(~)-im(o-l)O~m)(~)Jg(~,~o)ds+ . . . .  (2.1) 

4(-l)m ( 0 -  1) 2 
= 2(0 + 1) Fm(~o)+ FO(~O ) 

3 o -  1 

I ' -m°3C4 ") g(~,~o) ds+ . . . .  4 Fn~ (~0), 
L ds 

re=l ,2  .... 

Here 

~tFo(~ ) = N(o) _ iT(O ) _ I • _ e2i¥ • "~ {0 H + 022 (022 -- O~ + 2i0~2 )} 

I'tFm(~i) = N ( m ) .  - iT(m) '  21"tF#~(~) = v(m)'~3 ' N(m)- iT("O=eiV(x[m)- ix(2m))  

X(m)(~)=U("~)-iV(m), U(m)=(olm)(~), v(m)=oO(n')(~), re=O,1 .... 

et¥ 
ht0~'")(~)=tu~")], ho.)~4m)(;):[u~")], g ( ; , ; 0 ) = I m - -  

k-to 
The terms with regular kernels are not written down in (2.1). The structure of the system is such that 

all unknowns are "tied up" in its regular part, the characteristic part of the system containing exactly three 
functions [u(m)], [u(~)], [u3 (m)] for each fixed m = 1, 2 . . . .  and two functions [u )l and t# l  for m = 0. 

Since the displacement jumps vanish at the tips of Lj, the system of equations (2.1) must be considered 
together with the additional conditions 

U~'~+iVt"))d~=O, ~ d[u~")]=0, j = l , 2  ..... k ,m=0,1 .... 
Lj L~ 

and the functions U fro), I A'0 and d[u3(m)]/ds must be sought in the class h0 [9]. 

(2.2) 
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Let us consider more carefully the singular part of (2.1). For simplicity, we assume thatL is the section 
x2 = 0, -/~< xl ~< l. Then we have the following equations: 
fo rm = 0 

t dtu~O) + i u [ 0 ) ]  
- No(xo), - I  < x o < l (2.3) 

- I  X - -  X 0 

fo rm = 1, 2 , . . .  

t dtu~" 1 
= Nm(xo), - l < x 0 < l (2.4) 

- 1  X - -  X 0 

t dx 
y i , , ( x ) - - = N i , , ( X o ) ,  i=1,2  (2.5) 

- I  X - -  X 0 

Here y l , , ( x ) = d  o~,, ~ - 1  
• = 2or T,,, 

d [u~,,,)l_ .t.,[u~,,,)] Y2,,,(x) = Tx  . 

The functions Nm(x) and Ni,,,(x) are unknown. 
Equations (2.3) and (2.4) are solvable, their solutions being fixed by additional conditions of type 

(2.2). By the substitution 

d [ul,,,)l,  co2,,, = - ~ x b , ? " ) l  °31'" = d.--~ " " 

we reduce the remaining system (2.5) to the standard form [9, 10] 

I Olmd x I l -  x o ] 
I +~,,, ~ c02,,, In ,dx = Nt.,(Xo). m = 1,2 .... 
-t x - x0 -i  I x - x0 

l O)2mdx 
I 
-l X--  Xo 

t I l - x °  ~/m I fd01m In dx = N2m(x 0) 
-1  X - -  X 0 

where the kernels in the second terms are now regular. It follows that the characteristic part of (2.1) 
is solvable in h0 for any fixed m = 0, 1 , . . . .  

3. STRESS I N T E N S I T Y  FACTORS 

We introduce a parameterization ~ = ~05), ~ = ~(~o), -1 ~ ~i, ~0 ~< 1 of Lj (the subscriptj will be 
omitted below). Correspondingly, we set 

,,,(,,.)(;) = 

s'(~i)  ~ ' 

do~ m) - n~")(S) 

ds s'(8) ~ ' 

Using these expressions, formulae (1.7), (1.8) and (1.12) relating the densities in the integral representa- 
tions (1.4) with the displacement jumps, as well as (1.1)-(1.3), as a result of a detailed asymptotic analysis 
of the integral representations for the stresses we find that 

p =  1,2; m=O,l  .... 

s'(8) = d~ > 0 (~')(~) ~ H[-l,l]) 
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=_ lia , .~.~_.. ~ (Film)(ll)=ifi~m)(~l))cosmlix3 KI 
o + l  ~ S ' ( + l )  m--0 

Kill = -  2 m=l 

Kt= 2~(y,,, K I I =  23/2"-~'r(Yns , KIII=-2~on3 (r--->0) 

H e r e  on, on, and a,.,3 are  the  normal  and  tangent ia l  stresses in the  a rea  beyond  the  crack tip, the  u p p e r  
sign corresponding to the beginning a of  the crack and the lower one to the end b (Fig. 1). 

It follows that the stress intensity factors can be expressed in a natural way in terms of the functions 

, 4  1 
u = ----as [u, (4, x3. )] - ~ [u,.. (4, x3. )], 

d 1 
v = ~ [u~(4,x3)] + - [u. (4, x3)], 

P 

d 
Tss [u3(4,x3)] 

(4 = a j  V b i , x  3 ~ [-1,1]) 

4. S O M E  N U M E R I C A L  R E S U L T S  

As an example we consider a layer weakened by a tunnelling parabolic cut ~1 = plS, ~2 = P282 (-1 <~ 8 ~< 1) 
subject to a uniform field a T. A load Xn (n = 1, 2, 3) is assumed on the surfaces of the cut. 

In the numerical re~lization of the algorithm the system of integral equations (2.1) was reduced by the mechanical 
quadratures method [11] to a linear system of algebraic equations, which was solved by the reduction method. 
In the Nth approximation the first 3N + 2 real equations and, correspondingly, the 3N + 2 unknowns [ul(°)], [u~°)], 
[ul(m)], [u2(m~, [u3 (m)] (m = 1, 2 . . . . .  N) were retained in the system. Two integral equations and, correspondingly, the 
two densities [ul(°)], and [u~ °)] were retained in the zeroth approximation. Computations were carried out for N 
-- 0, 1, 2, 3, 4. The third approximation introduces practically no improvement in the accuracy of results for KI 
and Kn in the range I x3 1 < 0.9. Even more rapid convergence was observed for Kni in the range I x3 1 ~< 1. 

Let o~2 ~ 0, o~'l a]~, -- Xn -- 0 (n -- 1, 2, 3). In Fig. 2 we show diagrams of the distribution of the specific stress 
intensity factor ~ I )  U Ki/(a~2 q(rd)) with respect to the thickness coordinate for variousp2 and h/l (21 being the 
length of the crack). The upper three graphs correspond to a straight line crack (P2 -- 0) and the lower ones to a 
parabolic crack (P2 = 0.5). Whenp2 = 1 these three curves are very close to one another and to (KI) -- 0.2. Here 
and henceforthpl -- 1 and v = 0.3 were taken in the computations. 

ZI 

1..95 

/ 

~JZ 

~ f O  o 

hit=z..* 

I 

o.f 

/ 

I 
1 

@ o.,f 1 

Fig. 2. Fig. 3. 
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Now let ~T2 ~ 0 and oT1 = o~2 = Xn = 0. In this c a s e  ~II) is practically independent of x3. The values of  ~II) for 
a straight crack for h/l = 2.5 and h/l = I vary from 1.020 to 1.013 and from 1.030 to 1.024, respectively. For a parabolic 
crack the values o f ~ n )  are approximately the same when h/l = 0.5, 1, 2.5. Whenp2 = 0.5, we have 0.47 < ~n )  < 
0.48 forp2 = 1, 0.08 < ~KII ) < 0.10. 

We also consider the case when 6~ = 0 and shear forces X3 = X30) sin nx3,Xx = 2(2 = 0 act on the surface of 
a rectilinear crack. The graphs of ~Km) = KIII(X3 (1) ~/(/~/))-1 a r e  presented in Fig. 3. 

The  p r o c e d u r e  p r o p o s e d  in this p a p e r  for  solving the first bounda ry -va lue  p r o b l e m  of  the  theory  o f  
elast ici ty wi th  tunnel l ing  th rough-cu ts  can  be  used  wi thou t  any ma jo r  modif ica t ions  to solve the  second  
boundary -va lue  p rob lem,  for  example ,  for  a layer  with thin curvi l inear  r igid inclusions.  I t  can also be  
ex tended  to the  case of  a mul t ip ly  c o n n e c t e d  finite cy l inder  con ta in ing  bo th  cracks and  pe r fo ra t ion  
cavities.  
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