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The classical three-dimensional problem of the theory of elasticity for a layer weakened by generally curvilinear through-cuts is
considered. A characteristic feature of the present study is that one-dimensional singular integral equations or, more precisely,
an infinite system of such equations is used to solve the three-dimensional boundary-value problem. Numerical experiments indicate
that the solution of this system by the reduction method converges quite rapidly almost everywhere in the range of variation of
the thickness coordinate and the third approximation hardly increases the accuracy of results in this range. Hence the proposed
procedure reduces the dimension of the problem by two. The accuracy of the solution needs to be improved in the immediate
vicinity of the support of the layer, which involves singularities at the edge. This problem is not considered in this paper.

Problems of the above kind have been discussed more or less completely in [1-5]. An experimental
study of the stressed state at the end of the edge reaching the support of the layer is presented in [6].

1. FORMULATION OF THE PROBLEM

Consider an elastic layer - < X3 < h, —= < Xy, X, < co weakened by cavity-like through-cuts tunnelling
along the x;-axis whose cross-sections have the form of smooth open arcs L; (j = 1, 2, ... ., k). Suppose
that the boundaries of the cavities are subject to a surface load X5.(X} =X, =X ,,n = 1,2, 3). We
shall assume that the curvature of the arcs and the functions X;, satisfy the Hoélder condition on L;, and
X,, can be expanded in a Fourier series in X3 on [, #]. Below we consider the symmetric problem (with
respect to the median plane of the layer) of the theory of elasticity.

We start from Lur’ye’s homogeneous solutions [7], which we express as follows:
the biharmonic solution
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the potential solution
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t, =sind;, 1T, =cosd;, Red; >0, Im§, >0 (1.3)
Bi(x3)=((26 —1) 8,2, — 6821, ) cos ;x5 — G82x3t, sindx,
Kk(X3) = Sk(Tk sin 5kx3 - X3tk COSSkX3 )), p.k(x3) = 26K3(X3) - ak (X3 ),
Vi (x3) = (82, +821,) cos 8, x; + X303, sin &, x,
)\'k=8k/h’ (Vz—)\.zk)\vk=0
The integral representatlons of the functions in (1.1)}~(1.3) must ensure the existence of -displace-
ment jumps and the continuity of the stress vectoras L; (j = 1, 2, . . ., k) are crossed, as well as the

decay of displacements and stresses at infinity. Below we shall be ooncemed with the construction of
such representations correct in the above sense.

We set
@(z)=Re] (P(C) oG +pu(8) = VZG) di+| q(§) V2Gds
L ag Cl8 L
F(z)=-406Re[ p{)[In(¢-z)-1-1nh)(~2z)d{
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The functions p({) = {pj(€), {e L}, ..., Ru(€) = {R,,,J(C) € € L;} are to be determined from

the boundary conditions, but first they must be expressed in terms of the displacement jumps on
L,

We expand all even components of the displacement vector, the stress tensor and the external load
in Fourier series of the form u = X u™cos pmX3 and all odd components in series of the form U =
TU™sin p,x;. Singularities of the form ({ - z)~> appear in the kernels of the integral representations
when the Fourier coefficients c,.(”') are determined from (1.4). To remove these singularities we introduce
relationships between the densities in the representations (1.4)

4(1-30) p.({) = g‘. @@ p, (©+T® pr(L)

~1)™"(c —1) h?
§(—-l§°—2)-—p(c> 4ioR,, ()= ): (@™ p(§)+ 8™ pr (L) (1.5)

nmm

The boundary condifions on L have the form

{oi™ —e*¥aim ) =12V (X(™ ~iX{™}:, m=0,1,...
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Refe'¥ (0{™)* ) =2 (X{")*, m=1,2,... (1.6)

0; =0, 0y, 0y =0y =0 +2i0)3, C3=0)3-i0y

The upper sign corresponds to the left edge of the cut as one moves from the tip g; to b; and y is the
angle between the normal line to the left edge and the Ox, axis (Fig. 1).

The requirement that the stress vector should be continuous as the cut is crossed (in this case it is
sufficient for the boundary equalities (1.6) to be satisfied on one of the cut edges) and the requirement
that the displacement vector should have discontinuities on L lead to the relations

(m)
2©=-20 g =14a-301" Re 3 @,
U9 +iv® oy _ Alul™] [u(.'")]
= ——, M=t 1.7
r® 8noh ds P ( )
yom - ™1 L™y iU +1v<'">)
ds p =" 207 m?

according to which the densities g%,(L), p(£), R.»({) can be directly expressed in terms of the displacement
jumps along the cuts. The requirements also lead to three pairs of infinite systems of linear algebraic
equations relating the remaining densities to the jumps.

Introducing the representations

%@ =7 2 gyl (1.8)
+ 2h = c-1 q; ;
+p =2 y@ _ ey 91 U(O)) KR 1.9
Pr+ Dy ) E.I {qk, 7/ ( (=D o 20] (1.9)
p-pp=t 51t sy [ VRO o (1.10)
=R Wl noj’ '

we obtain the following “standard” systems (m,j = 1, 2, . . .; summation is over k from one to infinity)

6”
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Fig. 1.
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ReY of™gy; =8,,, ReY k{™gq, =0 (1.11)
ReY 0fVq; =0, ReY x{"g, =-3,, (1.12)
ImY AQVS,; =-3,;,, Im¥ p{™s, =0 (1.13)
Im3 AYVS; =0, Im¥ u{™s,; =3, (1.14)

where gy;, q,q, Siis St % are to be determined and §,,; is the Kronecker delta.

The resulting systems admit of an exact solutlon We consider (1. 11). Multiplying the rows in the
first system by cos p,x3 and in the second system by sin p,x; and summing the results over m, we find
that

2 g0y (x3) - of”) = fiv X qyKe(x3)=0
fj=2cospjx;, Red, >0 (1.15)

The functions oy (x3), px(x3) constitute a solution of the following (non-self-adjoint) boundary-value
problem

af(x3) +(1+0) 820, (x3) + O} (x3) =0
(1+0) Wy (x3) + 82, (x3) + 0820} (x3) =0 ’ (1.16)
o () + 1, (1) =0, (0-1)820 (£1)+(0+1) pi(2) =0

Using (1.16), one can reduce the functional equations (1.15) to the following equivalent form
P MACHES 6— fia) E gyt () =—= f,“"( x3) (117)
Here Y, is the solution of the boundary-value problem
YD +281Y+8,Y, =0, Y (xD=Y¥(xD)=0 (1.18)

The generalized orthogonality condition has the form

]
[ VY, -B5+8,)Y.Y, dx; =0, m#k (1.19)
-1

Using (1.18) and (1.19), and the scheme developed in [8], we obtain

206k
o+

4 = J fj’(xq)Y,c(x;)dx%/j () - 8%} dx,

Computing the above integrals, we ﬁnally obtain

4n’j252

Grhan ) Wt 8 —p; (1.20)
J

gy = (1"

In a similar way we can find the solutions of the “standard” systems (1.12)—(1.14)
; 2rj 30+1
= (—1)/*! _<hy (nz 2 82)
N (4T)* ST
S =i(2oq,; + nj‘l;j ), Sl:j =1iqy (1.21)

We have therefore established that the infinite systems of equations (1.11)-(1.14) are solvable. The
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solutions are obtained in closed form and are given by (1.20) and (1.21), all the densities in the integral
representations (1.4) being expressed in terms of physical quantities, namely, the “displacement” jumps
onL.

Formulae (1.9) and (1.10) can be simplified considerably by substituting into them the values of the
coefficients from (1.20) and (1.21) and taking the sums of certain series. We have

Py +p; = - EkU(O)'l'lz ‘—l;'LU(J) , K

» = Sy () imC = 4y 2c-1)n’
Pk"Pk=__h3’ EvO-F Kyh 95 I, B, =—C-DT_ 1:)
o~n j=1 J h j=1 j (o+1)d;1;

Note that representations (1.4) also remain valid for the second fundamental problem, for example,
in the presence of a rigid insertion in a cavity. However in the latter case the densities will be expressed
in terms of the jumps of the stress vector on L.

2. INTEGRAL EQUATIONS OF BOUNDARY-VALUE PROBLEM (1.6)

We obtain integral representations for the stresses o; by substituting the formulae from (1.4) for the
functions in (1.1)~(1.3). Expanding the resultm)g expressions in Fourier series in xs, we obtain integral
representations of the Fourier coefficients o Then, by satisfying the boundary conditions (1.6) on
one edge of L and taking (1.5), (1.7), (1.8), and (1.22) into account, we arrive at an infinite system of
one-dimensional singular integro-differential equations of the first kind

I X©) g(5,8o) ds+.. = ’“’l Fy(Co)

J (2: x™(8) - im(c - l)w‘""(C))g(c,co)ds+...= 21)

L

4-D"(c-1)
301

h do{™ m . |
f(_ ; - mof ))8'(C,Co)dS+~-=4Fm(Co)’ m=12,..

=2(c+1) F,(§y)+ £y (&)

Here
. l o * { oo oo . 00
"LFZ)(C) = N(O) - lT(O) - 'i‘ {G” + 022 —82”"(0'22 —G” +210’|2)}

RE,(G)=N™ —iT'™  2uF @)= X{"™, N™ —iT"™ =¢Y(X{™ -iX{™)
XM @=0" -ivim, U =eim@), V=), m=0,1,..
eV
§-Co
The terms with re, gular kernels are not written down in (2.1). The structure of the system is such that
all unknowns are “ticd up” in its regular part, the characteristic part of the system oontamlng exactly three
functions [u™], [1™], [u{™)] for each fixed m = 1,2, . .. and two functions [u?] and [£?] for m = 0.

Since the displacement jumps vanish at the tips of L the system of equations (2.1) must be considered
together with the additional conditions

ho{" Q) =™ ), ho{ @) ={u!™], 8({&Ly)=Im

fwm+iviydg=0, [ du1=0, j=1,2,..k,m=0,1,... (2.2)

L L

and the functions U, ™ and d[u{™)/ds must be sought in the class A, [9].
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Let us consider more carefully the singular part of (2.1). For simplicity, we assume that L is the section
xy = 0, = x; < l. Then we have the following equations:

form=20
] 0) 4 ;. (0)
dg *im ] No(xy) —l<xg<l (23)
-1 X - xo
form=1,2,...
! (m)
| dlw” 1 _ N, (xg), —l<xy<l (24)
- X=X
! dx .
J Yim(0) =N, (x) =12 (2.5)
-1 X — xO
Here

d o c-1
ylm(x)=z[u|(m)]+am[uj({ l)]~ am =_2—(’_er|

d m m
,\’g,,,(x)=2;[u§ N Y lef™]

The functions N,,(x) and N,,(x) are unknown.
Equations (2.3) and (2.4) are solvable, their solutions being fixed by additional conditions of type
(2.2). By the substitution

d d
=_[u}m)]’ (Dzm =__[ll§lll)]

)
Im = dx dx

we reduce the remaining system (2.5) to the standard form [9, 10]

- x

! !

W, dx

[ ——+a, | 0, In dx=N,,,(x5), m=12,..
-1

X — X

— X - xo

l—xo

I(l) d 1
j Ll _Ynx.[ wlm In dx:NZm'('xO)

-1 X=X -]

X—Xq

where the kernels in the second terms are now regular. It follows that the characteristic part of (2.1)
is solvable in hy for any fixedm =0, 1, .. ..

3. STRESS INTENSITY FACTORS

We introduce a parameterization { = {(8), { = {(8), —1 < §, 8y < 1 of L; (the subscript j will be
omitted below). Correspondingly, we set

m‘”’(é)—————gg””)(& p=12; m=0,1
’ s@®V1-87" "
doi™ Q™ (3) ds )
= . S@)y==—=>0 Q™ () e H[-11])
ds '(8) \/Cy dé P

Using these expressions, formulae (1.7), (1.8) and (1.12) relating the densities in the integral representa-
tions (1.4) with the displacement jumps, as well as (1.1)—~(1.3), as a result of a detailed asymptotic analysis
of the integral representations for the stresses we find that
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. o T = .

Kl - lK“ = a—l m mZ=O(Q§M)(:F1) - lg(zm)(:Fl)) COSmT|x,
h n o=

Ky =- L — X 0(3"')(11) sinmmxs
2 Vs (F1) m=1

K1=w/27tr0,.. K,,=1/21trc,,s, Ky =+2nrc,; (r—0)

Here o, 0,; and 6,3 are the normal and tangential stresses in the area beyond the crack tip, the upper
sign corresponding to the beginning a of the crack and the lower one to the end b (Fig. 1).
It follows that the stress intensity factors can be expressed in a natural way in terms of the functions

d 1 d
= Z (u, (C,X;; - ; [u.\-(C, x3)L d_s [u_;(C, x3)]

d 1
V=Z[u_‘.(c,x3)]+ ;[un(C,x3)], {4 =a;Vb;,xye[-1,1])

4. SOME NUMERICAL RESULTS

As an example we consider a layer weakened by a tunnelling parabolic cut & = p;8, & = p,8* (-1 < 8§ < 1)
subject to a uniform field 6. A load X, (n = 1, 2, 3) is assumed on the surfaces of the cut.

In the numerical realization of the algorithm the system of integral equations (2.1) was reduced by the mechanical
quadratures method [11] to a linear system of algebraic equations, which was solved by the reduction method.
In the Nth approximation the first 3N + 2 real equations and, correspondingly, the 3N + 2 unknowns [u{%], (15,
™), ™), [4s™] (m = 1,2, . .., N) were retained in the system. Two integral equations and, correspondingly, the
two densities [u{®], and [$?] were retained in the zeroth approximation. Computations were carried out for N
=0, 1, 2, 3, 4. The third approximation introduces practically no improvement in the accuracy of results for K;
and Kj; in the range | x; | < 0.9. Even more rapid convergence was observed for Kpy; in the range |x;| < 1.

Leton# 0,07 o1y =X, = 0(n =1, 2, 3). In Fig. 2 we show diagrams of the distribution of the specific stress
intensity factor (}(1) = Ki/(c5; V(nl)) with respect to the thickness coordinate for various p, and 4/l (2 being the
length of the crack). The upper three graphs correspond to a straight line crack (p, = 0) and the lower ones to a
parabolic crack (p, = 0.5). When p, = 1 these three curves are very close to one another and to (K;) = 0.2. Here
and henceforth p; = 1 and v = 0.3 were taken in the computations.

<K;)
27
A2 S
105 \ 7 2<A>
I, 47
7
3 ‘L; JL T 3
] P4
pa

457
v \ﬂ,i
/
l'flﬂ a5 4 2
Z;

Fig. 2.
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Now let 673 # 0 and 67} = 65, = X,, = 0. In this case (K} is practically independent of x3. The values of (Ky;) for
a straight crack for A/l = 2.5 and 4/l = 1 vary from 1.020 to 1.013 and from 1.030 to 1.024, respectively. For a parabolic
crack the values of (Ky) are approximately the same when h/l = 0.5, 1, 2.5. When p, = 0.5, we have 0.47 < (Ky) <
0.48 for p, = 1, 0.08 < (Ky) < 0.10.

We also consider the case when 65 = 0 and shear forces X; = X4V sin 1x3, X; = X, = 0 act on the surface of
a rectilinear crack. The graphs of (Kiy) = K(X<" V(rd)) ™ are presented in Fig, 3.

The procedure proposed in this paper for solving the first boundary-value problem of the theory of
elasticity with tunnelling through-cuts can be used without any major modifications to solve the second
boundary-value problem, for example, for a layer with thin curvilinear rigid inclusions. It can also be
extended to the case of a multiply connected finite cylinder containing both cracks and perforation
cavities.
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